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LETTER TO THE EDITOR 

New shape-invariant potentials in supersymmetric quantum 
mechanics 

A m a r e  and U P SukhatmeT 
Institute of Physics, Sachivalaya Mar& Bhubaneswar 751005, India 

Received I May 1993 

Abstract Quantum mechanical potentials satisfying the property of shape invariance are 
well known to be algebraically solvahle. Using a scaling ansatz for the change ofparameters, 
we obtain a large class of new shape-invariant potentials which are reEectionlffs and possess 
an infinite number of bound states. They can be viewed as qdeformations of the single 
soliton solution corresponding to the Rosen-Morse potential. Explicit expressions for 
energy eigenvalues, eigenfunctions and hansmission coefficients an given. Included in our 
potentials as a special case is the self-similar potential recently discussed by Shabat and 
Spiridonov 

In recent years, supersymmetric quantum mechanics [I] has yielded many interesting 
results. Some time ago, Gendenshtein pointed out that supersymmetric partner poten- 
tials satisfying the property of shape invariance and unbroken supersymmetry are 
exactly solvable [2]. The shape invariance condition is 

V+(x, (lo) = V-(x, ad +ma) (1) 
where (lo is a set of parameters and US =f(uo) is an arbitrary function describing the 
change of parameters. The common x-dependence in V- and V+ allows full determina- 
tion of energy eigenvalues [2], eigenfunctions [3] and scattering matrices [4], algebra- 
ically. One finds ( f i = h = l )  

n-I 

k=O 
EL-;'((lo)= R(ak) E&--'((lo)=O (2) 

where the superpotential W(x, UO) is related to Vt(x, UO) by 

V*(x, uo) = wyx, uo) i wyx, uo). 

V(x, uo) + W ( X ,  uo) = W*(X, U]) - W ( X ,  U]) +quo). 

(4) 

( 5 )  

In terms of W, the shape invariance condition reads 

It is still a challenging open problem to identify and classify the solutions to (5).  Certain 
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solutions to the shape invariance condition are known 151. (They include the harmonic 
oscillator, Coulomb, Morse, Eckart and Poschl-Teller potentials.) In all these cases, it 
tums out that aI and 00 are related by a translation (al =UQ+ a). Careful searches with 
this ansatz have failed to yield any additional shape-invariant potentials [6]. Indeed it 
has been suggested [7] that there are no other shape-invariant potentials. Although a 
rigorous proof has never been presented, no counterexamples have so far been found 
either. 

In this letter, we consider solutions of (5) resulting from a new scaling ansatz 

a= q h  (6) 
where O<q<l. This choice was motivated by the recent interest in q-deformed Lie 
algebras. It enables us to find a large class of new shape-invariant potentials, all of 
which are reflectionless and possess an infinite number of bound states. As a special 
case, OUT approach includes the self-similar potential studied by Shabat [SI and 
Spiridonov 191. 

Consider an expansion of the superpotential of the form 

Substituting into (3, writing R&) in the form 

and equating powers of a. yields 

Rox 
2 go($ =-+ CO 

Ro fdx) = - 
2 

where 

d =- I-' (n=l ,2 ,3  ...). 
"-1+' 

R. = (1 - o r .  

This set of linear differential equations is easily solvable in succession yielding a general 
solution of (5).  Note that the l i t  q-0 is particularly simple yieldiog the one-soliton 
Rosen-Morse potential of the form W= y tanh yx. Thus OUT results can he regarded 
as multiparameter deformations of this potential corresponding to different choices of 
R. . For simplicity, in this letter we shall confine our attention to the special case go(x) = 
0 (i.e. &= G=O), while the more general case will be discussed elsewhere [lo]. 

For go=O, the solution is 

For the simplest case r,,=O, n 2 2  we obtain the superpotential Was given by Shabat 
IS] and Spiridonov [9 ] ,  provided we choose dlrloo= f and replace q by 8. This shows 
that the self-similarity condition of these authors is, in fact, a special case of the shape 
invariance condition (5).  This comment is also true in case any one r, (say rj)  is taken 
to he non-zero and d is replaced by 8. 
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Let us now consider a somewhat more general case when r.=O, n 2 3 .  Using (12) 

gz(x) = d2r2.x- ;d,dxd2x’ 

we can readily caldate  all gn(x). The 5rst three are 

gdx) =dlr,x 

g+) = -~d1r1d2r~d~x’+$ddMd~dg~. (13) 

Note that W(x) contains only odd powers of x. This makes the potential V-(x) symmet- 
ric in x and also guarantees the situation of unbroken supersymmetry. The energy 
eigenvalues follow immediately from (2) and (8) (n=O, 1,2,. . . , m; O<q-: 1) 

The superpotential W(x) can he written in a somewhat more compact form if one 
defines y k d l r l a ,  and y k d 2 r 2 d .  The unnormalizedground-state wavefunction is easily 
obtained from (3): 

(15) 1 ( r : + r 3 + ~  x4 (&n+ 4 3nr2+4r;)+o(x6) 2 2  . 

The excited-state wavefnnctions can be recursively calculated by using (3) with a,= 
quo. 

The transmission coefficient of two symmetric partner potentials are reIated by [I IJ 

where k = [ E -  W2(m, For a shape-invariant potential 

T+(k ~lo)=T-(k, ai). 

Repeated application of (16) and (17) gives 

T-(k, no) = 

where 

ik- W(a,, oo) ik- W(m, a1) 
ik+ W(m, a,) I[ ik+ W(m, a1) 

W( a,, U/) = (EA-) - I p ) ?  

As n+a,, since a,=q“aO and we have taken go(x)=O, one obtains W(x,a,)+O. This 
corresponds to a free particle for which the transmission coefficient is unity. Thus, for 
the potential V-(x, a,), the reflection co&cient vanishes and the transmission coefficient 
is 

Clearly, I T 1 2 =  1 and the poles of T- correspond to the energy eigenvalues of (14). 
Note that one does not get reflectionless potentials for the case g&) #O. This will be 
further discussed in [lo]. 
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The above discussion, keeping only r , ,  rz#O, can readily be generalized to an arbi- 
trary number of non-zero ri. The energy eigenvalues for this case are given by 

All of these potentials are also reflectionless with T- as given by (19)-(21). One expects 
that these symmetric reflectionless potentials can also be derived using previously devel- 
oped methods [12] and the spectrum given in (21). 

In (7) and (8) we have only kept positive powers of uo . If, instead, we had only kept 
I negative powers of 00, then the spectrum would be similar except that one has to choose 

the deformation parameter q> 1. However, a mixture of positive and negative powers 
of 00 is no! allowed in general since neither q < 1 nor q > 1 will give an acceptable 
spectrum. For the enlarged class of shape-invwt potentials discussed in this letter, 
it is clear [3] that the lowest order supersymmetric WKB approximation [13] will yield 
the exact spectrum. 

We conclude with two brief remarks on extensions of the work described in this 
letter. We have been able to construct new shape-invariant potentials which are q- 
deformations of the potentials corresponding to multi-soliton systems [lo]. Also, it is 
possible to show [lo] that with the choice go(x)#O, one obtains qdeformations of the 
onedimensional harmonic oscillator potential. 

One of us (US) would like to thank the Council of Scientific and Industrial Research 
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